Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of chemical alternatives to methyl bromide on soil-borne disease incidence and fungal populations in Spanish strawberry nurseries: A long-term study.

Identifieur interne : 000232 ( Main/Exploration ); précédent : 000231; suivant : 000233

Effect of chemical alternatives to methyl bromide on soil-borne disease incidence and fungal populations in Spanish strawberry nurseries: A long-term study.

Auteurs : Maria Villarino [Espagne] ; Inmaculada Larena [Espagne] ; Paloma Melgarejo [Espagne] ; Antonieta De Cal [Espagne]

Source :

RBID : pubmed:32896102

Abstract

BACKGROUND

Chloropicrin (PIC) mixtures of 1,3-dichloropropene and chloropicrin (DD:PIC), dazomet, and metam sodium (MS) have been applied as chemical alternatives to methyl bromide (MB) in Spanish strawberry nurseries since MB was banned as a soil fumigant in 2005. These chemical alternatives were applied to soil in two Spanish strawberry nurseries between 2003 and 2017 to test their efficacy against the main crown and root disease and soil fungal populations in comparison with the use of MB and PIC (MB:PIC). These chemicals were applied at several doses with different application methods under plastic films. Crown and root disease incidence was calculated as the percentage of plants with symptoms caused by soil-borne pathogens. Soil fungal populations were estimated as colony forming units per gram of dry soil.

RESULTS

All chemicals significantly reduced soil-borne fungal disease incidence and fungal population in both nurseries over the years. Phytophthora cactorum and Fusarium spp. were the main pathogens causing soil-borne diseases, followed by Verticillium spp. MB:PIC remained the treatment that best controlled P. cactorum. MS and DD:PIC controlled Fusarium disease to a lesser extent than MB:PIC and dazomet in both nurseries. MB:PIC and PIC were the two treatments that most reduced Verticillium spp. The population of Verticillium spp. declined and the presence of other species such as Colletotrichum spp. and Rhizoctonia spp. was minimal during the study.

CONCLUSION

Chemicals are necessary to obtain healthy strawberry plants. The use of chemical alternatives to MB has resulted in changes in the incidence of soil-borne diseases and soil fungal populations in strawberry nurseries. Dazomet was an effective alternative to MB as a soil-borne disease control, except against Verticillium spp. MB alternatives in strawberry nursery soils have caused Fusarium spp. to displace Verticillium spp.


DOI: 10.1002/ps.6077
PubMed: 32896102


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effect of chemical alternatives to methyl bromide on soil-borne disease incidence and fungal populations in Spanish strawberry nurseries: A long-term study.</title>
<author>
<name sortKey="Villarino, Maria" sort="Villarino, Maria" uniqKey="Villarino M" first="Maria" last="Villarino">Maria Villarino</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Plant Protection, National Research Agriculture Institute, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Plant Protection, National Research Agriculture Institute, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Larena, Inmaculada" sort="Larena, Inmaculada" uniqKey="Larena I" first="Inmaculada" last="Larena">Inmaculada Larena</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Plant Protection, National Research Agriculture Institute, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Plant Protection, National Research Agriculture Institute, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Melgarejo, Paloma" sort="Melgarejo, Paloma" uniqKey="Melgarejo P" first="Paloma" last="Melgarejo">Paloma Melgarejo</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Plant Protection, National Research Agriculture Institute, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Plant Protection, National Research Agriculture Institute, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Cal, Antonieta" sort="De Cal, Antonieta" uniqKey="De Cal A" first="Antonieta" last="De Cal">Antonieta De Cal</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Plant Protection, National Research Agriculture Institute, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Plant Protection, National Research Agriculture Institute, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32896102</idno>
<idno type="pmid">32896102</idno>
<idno type="doi">10.1002/ps.6077</idno>
<idno type="wicri:Area/Main/Corpus">000072</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000072</idno>
<idno type="wicri:Area/Main/Curation">000072</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000072</idno>
<idno type="wicri:Area/Main/Exploration">000072</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effect of chemical alternatives to methyl bromide on soil-borne disease incidence and fungal populations in Spanish strawberry nurseries: A long-term study.</title>
<author>
<name sortKey="Villarino, Maria" sort="Villarino, Maria" uniqKey="Villarino M" first="Maria" last="Villarino">Maria Villarino</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Plant Protection, National Research Agriculture Institute, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Plant Protection, National Research Agriculture Institute, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Larena, Inmaculada" sort="Larena, Inmaculada" uniqKey="Larena I" first="Inmaculada" last="Larena">Inmaculada Larena</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Plant Protection, National Research Agriculture Institute, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Plant Protection, National Research Agriculture Institute, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Melgarejo, Paloma" sort="Melgarejo, Paloma" uniqKey="Melgarejo P" first="Paloma" last="Melgarejo">Paloma Melgarejo</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Plant Protection, National Research Agriculture Institute, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Plant Protection, National Research Agriculture Institute, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Cal, Antonieta" sort="De Cal, Antonieta" uniqKey="De Cal A" first="Antonieta" last="De Cal">Antonieta De Cal</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Plant Protection, National Research Agriculture Institute, Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Plant Protection, National Research Agriculture Institute, Madrid</wicri:regionArea>
<placeName>
<settlement type="city">Madrid</settlement>
<region nuts="2" type="region">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Pest management science</title>
<idno type="eISSN">1526-4998</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Chloropicrin (PIC) mixtures of 1,3-dichloropropene and chloropicrin (DD:PIC), dazomet, and metam sodium (MS) have been applied as chemical alternatives to methyl bromide (MB) in Spanish strawberry nurseries since MB was banned as a soil fumigant in 2005. These chemical alternatives were applied to soil in two Spanish strawberry nurseries between 2003 and 2017 to test their efficacy against the main crown and root disease and soil fungal populations in comparison with the use of MB and PIC (MB:PIC). These chemicals were applied at several doses with different application methods under plastic films. Crown and root disease incidence was calculated as the percentage of plants with symptoms caused by soil-borne pathogens. Soil fungal populations were estimated as colony forming units per gram of dry soil.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>All chemicals significantly reduced soil-borne fungal disease incidence and fungal population in both nurseries over the years. Phytophthora cactorum and Fusarium spp. were the main pathogens causing soil-borne diseases, followed by Verticillium spp. MB:PIC remained the treatment that best controlled P. cactorum. MS and DD:PIC controlled Fusarium disease to a lesser extent than MB:PIC and dazomet in both nurseries. MB:PIC and PIC were the two treatments that most reduced Verticillium spp. The population of Verticillium spp. declined and the presence of other species such as Colletotrichum spp. and Rhizoctonia spp. was minimal during the study.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Chemicals are necessary to obtain healthy strawberry plants. The use of chemical alternatives to MB has resulted in changes in the incidence of soil-borne diseases and soil fungal populations in strawberry nurseries. Dazomet was an effective alternative to MB as a soil-borne disease control, except against Verticillium spp. MB alternatives in strawberry nursery soils have caused Fusarium spp. to displace Verticillium spp.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32896102</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1526-4998</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Sep</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>Pest management science</Title>
<ISOAbbreviation>Pest Manag Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Effect of chemical alternatives to methyl bromide on soil-borne disease incidence and fungal populations in Spanish strawberry nurseries: A long-term study.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ps.6077</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Chloropicrin (PIC) mixtures of 1,3-dichloropropene and chloropicrin (DD:PIC), dazomet, and metam sodium (MS) have been applied as chemical alternatives to methyl bromide (MB) in Spanish strawberry nurseries since MB was banned as a soil fumigant in 2005. These chemical alternatives were applied to soil in two Spanish strawberry nurseries between 2003 and 2017 to test their efficacy against the main crown and root disease and soil fungal populations in comparison with the use of MB and PIC (MB:PIC). These chemicals were applied at several doses with different application methods under plastic films. Crown and root disease incidence was calculated as the percentage of plants with symptoms caused by soil-borne pathogens. Soil fungal populations were estimated as colony forming units per gram of dry soil.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">All chemicals significantly reduced soil-borne fungal disease incidence and fungal population in both nurseries over the years. Phytophthora cactorum and Fusarium spp. were the main pathogens causing soil-borne diseases, followed by Verticillium spp. MB:PIC remained the treatment that best controlled P. cactorum. MS and DD:PIC controlled Fusarium disease to a lesser extent than MB:PIC and dazomet in both nurseries. MB:PIC and PIC were the two treatments that most reduced Verticillium spp. The population of Verticillium spp. declined and the presence of other species such as Colletotrichum spp. and Rhizoctonia spp. was minimal during the study.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Chemicals are necessary to obtain healthy strawberry plants. The use of chemical alternatives to MB has resulted in changes in the incidence of soil-borne diseases and soil fungal populations in strawberry nurseries. Dazomet was an effective alternative to MB as a soil-borne disease control, except against Verticillium spp. MB alternatives in strawberry nursery soils have caused Fusarium spp. to displace Verticillium spp.</AbstractText>
<CopyrightInformation>© 2020 Society of Chemical Industry.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Villarino</LastName>
<ForeName>Maria</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Protection, National Research Agriculture Institute, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Larena</LastName>
<ForeName>Inmaculada</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Protection, National Research Agriculture Institute, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Melgarejo</LastName>
<ForeName>Paloma</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Protection, National Research Agriculture Institute, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>De Cal</LastName>
<ForeName>Antonieta</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7725-7782</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Protection, National Research Agriculture Institute, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AT06-006-C7-6</GrantID>
<Agency>Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>CC09-074</GrantID>
<Agency>Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>OT3-006-C7-3</GrantID>
<Agency>Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>RTA2013-00062-C05-E</GrantID>
<Agency>Ministerio de Ciencia e Innovación</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Pest Manag Sci</MedlineTA>
<NlmUniqueID>100898744</NlmUniqueID>
<ISSNLinking>1526-498X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Fusarium spp.</Keyword>
<Keyword MajorTopicYN="N">Phytophthora cactorum</Keyword>
<Keyword MajorTopicYN="N">chloropicrin</Keyword>
<Keyword MajorTopicYN="N">dazomet</Keyword>
<Keyword MajorTopicYN="N">dichloropropene</Keyword>
<Keyword MajorTopicYN="N">metam sodium</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>5</Hour>
<Minute>28</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32896102</ArticleId>
<ArticleId IdType="doi">10.1002/ps.6077</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Anuario Estadística Agraria 2018. Ministerio de Agricultura, Pesca y Alimentación. Available: www.mapama.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/. Accessed 20 April 2020.</Citation>
</Reference>
<Reference>
<Citation>De Cal A, Martínez-Treceño A, López-Aranda JM and Melgarejo P, Chemical alternatives to methyl bromide in Spanish strawberry nurseries. Plant Dis. 88:210-214 (2004).</Citation>
</Reference>
<Reference>
<Citation>López-Aranda JM, Domínguez P, Miranda L, de los Santos B, Talavera M, Daugovish O et al., Fumigant use for strawberry production in Europe: the current landscape and solutions. Int J Fruit Sci 16:1-15 (2016).</Citation>
</Reference>
<Reference>
<Citation>Domínguez P, Miranda L, Medina JJ, de los Santos B, Talavera M, Daugovish O et al., Evaluation of non-fumigant alternative soil treatments for strawberry production in Huelva (Spain). Int J Fruit Sci 16:28-36 (2016).</Citation>
</Reference>
<Reference>
<Citation>European Commission, Commission Implementing Directive 2011/53/EU of 20 April 2011 amending Council Directive 91/414/EEC to include dazomet as active substance and amending Commission Decision 2008/934/EC Text with EEA relevance. Off J Eur Union L 105:24-27 (2011).</Citation>
</Reference>
<Reference>
<Citation>European Commission, Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances Text with EEA relevance. Off J Eur Union L 153:1-186 (2011).</Citation>
</Reference>
<Reference>
<Citation>European Commission, Commission Implementing Regulation (EU) No 359/2012 of 25 April 2012 approving the active substance metam, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011 Text with EEA relevance. Off J Eur Union L 114:1-7 (2012).</Citation>
</Reference>
<Reference>
<Citation>Colla P, Gilardi G and Gullino ML, A review and critical analysis of the European situation of soilborne disease management in the vegetable sector. Phytoparisitica 40:515-523 (2012).</Citation>
</Reference>
<Reference>
<Citation>Duniway JM, Status of chemical alternatives to methyl bromide for pre-plant fumigation of soil. Phytopathology 92:1337-1343 (2002).</Citation>
</Reference>
<Reference>
<Citation>Nash SM and Snyder WC, Quantitative estimations by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology 52:567-572 (1962).</Citation>
</Reference>
<Reference>
<Citation>Jeffers SN and Martin SB, Comparison of two media selective for Phytophthora and Pythium species. Plant Dis. 70:1038-1043 (1986).</Citation>
</Reference>
<Reference>
<Citation>Lacey J, Hill ST and Edwards MA, Microorganisms in stored grains: their enumeration and significance. Trop Stored Prod Inf 3:19-33 (1980).</Citation>
</Reference>
<Reference>
<Citation>Ausher R, Katan J and Ovadia S, An improved selective medium for the isolation of Verticillium dahliae. Phytoparasitica 3:133-137 (1975).</Citation>
</Reference>
<Reference>
<Citation>Snedecor GW and Cochram WG, Statistical Methods, 7th edn. Iowa State University, Ames (1980).</Citation>
</Reference>
<Reference>
<Citation>Xue S, Gan J, Yates SR and Becker JO, Nematode response to methyl bromide and 1,3-dichloropropene soil fumigation at different temperatures. Pest Manag Sci 56:737-742 (2000).</Citation>
</Reference>
<Reference>
<Citation>Klose S, Ajwa HA, Browne GT, Subbarao KV, Martin FN, Fennimore SA et al., Dose response of weed seeds, plant-parasitic nematodes, and pathogens to twelve rates of metam sodium in a California soil. Plant Dis. 92:1537-1546 (2008).</Citation>
</Reference>
<Reference>
<Citation>Fennimore SA, Duniway JM, Browne GT, Martin FN, Ajwa HA, Westerdahl BB et al., Methyl bromide alternatives evaluated for California strawberry nurseries. Calif Agric 62:62-67 (2008).</Citation>
</Reference>
<Reference>
<Citation>Villarino M, De la Lastra E, Basallote MJ, Capote N, Larena I, Melgarejo P et al., Characterization of Fusarium solani populations associated with Spanish strawberry crops. Plant Dis. 103:1974-1982 (2019).</Citation>
</Reference>
<Reference>
<Citation>Pastrana AM, Basallote-Ureba M, Aguado A and Capote N, Potential inoculum sources and incidence of strawberry soilborne pathogens in Spain. Plant Dis. 101:751-760 (2017).</Citation>
</Reference>
<Reference>
<Citation>Arroyo FT, Llergo Y, Aguado A and Romero F, First report of Fusarium wilt caused by Fusarium oxysporum on strawberry in Spain. Plant Dis. 93:323 (2009).</Citation>
</Reference>
<Reference>
<Citation>Fang X, Phillips D, Li H, Sivasithamparam K and Barbetti MJ, Comparisons of virulence of pathogens associated with crown and root diseases of strawberry in Western Australia with special reference to the effect of temperature. Sci Hortic 131:39-48 (2011).</Citation>
</Reference>
<Reference>
<Citation>Williamson M, Fernandez-Ortuño D and Schnabel G, First report of Fusarium wilt of strawberry caused by Fusarium oxysporum in South Carolina. Plant Dis 96:911 (2012).</Citation>
</Reference>
<Reference>
<Citation>Stanković I, Ristić D, Vučurović A, Milojević K, Nikolić D, Krstić B et al., First report of Fusarium wilt of strawberry caused by Fusarium oxysporum in Serbia. Plant Dis. 98:1435 (2014).</Citation>
</Reference>
<Reference>
<Citation>Surovy MZ, Kabir MK, Gupta DR, Hassan O, Mahmud NU, Sabir AA et al., First report of Fusarium wilt caused by Fusarium oxysporum on strawberry in Bangladesh. Plant Dis. 103:367-368 (2019).</Citation>
</Reference>
<Reference>
<Citation>Gordon TR, Daugovish O, Koike ST, Islas CM, Kirkpatrick SC, Yoshisato JA et al., Options for management of Fusarium wilt of strawberry in California. Int J Fruit Sci 16:160-168 (2016).</Citation>
</Reference>
<Reference>
<Citation>Koike ST and Gordon TR, Management of Fusarium wilt of strawberry. Crop Prot 73:67-72 (2015).</Citation>
</Reference>
<Reference>
<Citation>Gamliel A, Grinstein A, Katan J and Klein L, Reducing the dosage of methyl bromide for soil fumigation by using virtually impermeable films. Phytoparasitica 22:79-80 (1994).</Citation>
</Reference>
<Reference>
<Citation>De Cal A, Martínez-Treceño A, Salto T, López-Aranda JM and Melgarejo P, Effect of chemical fumigation on soil fungal communities in Spanish strawberry nurseries. Appl Soil Ecol 28:47-56 (2005).</Citation>
</Reference>
<Reference>
<Citation>Gordon TR, Okamoto D and Jacobson DJ, Colonization of muskmelon and nonsusceptible crops by Fusarium oxysporum f. sp. Melonis and other species of Fusarium. Phytopathology 79:1095-1100 (1989).</Citation>
</Reference>
<Reference>
<Citation>Henry PM, Pastrana AM, Leveau JHJ and Gordon TR, Persistence of Fusarium oxysporum f. sp. fragariae in soil through asymptomatic colonization of rotation crops. Phytopathology 109:770-779 (2019).</Citation>
</Reference>
<Reference>
<Citation>Dhingra OD and Coelho Netto RA, Reservoir and non-reservoir hosts of bean wilt pathogen, Fusarium oxysporum f. sp. phaseoli. J Phytopathol 149:463-467 (2001).</Citation>
</Reference>
<Reference>
<Citation>Alves-Santos FM, Benito EP, Eslava AP and Díaz-Mínguez JM, Genetic diversity of Fusarium oxysporum strains from common bean fields in Spain. Appl Environ Microbiol 65:3335-3340 (1999).</Citation>
</Reference>
<Reference>
<Citation>Leslie JF, Pearson CAS, Nelson PE and Toussoun TA, Fusarium species from corn, sorghum, and soybean fields in the central and eastern United States. Phytopathology 80:343-350 (1990).</Citation>
</Reference>
<Reference>
<Citation>Fracchia S, Garcia-Romera I, Godeas A and Ocampo JA, Effect of the saprophytic fungus Fusarium oxysporum on arbuscular mycorrhizal colonization and growth of plants in greenhouse and field trials. Plant and Soil 223:175-184 (2000).</Citation>
</Reference>
<Reference>
<Citation>Alves-Santos FM, Cordeiro-Rodrigues L, Sayagués JM, Martín-Domínguez R, García-Benavides P, Crespo MC et al., Pathogenicity and race characterization of Fusarium oxysporum f. sp. phaseoli isolates from Spain and Greece. Plant Pathol 51:605-611 (2002).</Citation>
</Reference>
<Reference>
<Citation>Chandra NS, Wulff EG, Udayashankar AC, Nandini BP, Niranjana SR, Mortensen CN et al., Prospects of molecular markers in Fusarium species diversity. Appl Microbiol Biotechnol 90:1625-1639 (2011).</Citation>
</Reference>
<Reference>
<Citation>Everts KL and Himmelstein JC, Fusarium wilt of watermelon: towards sustainable management of a re-emerging plant disease. Crop Prot 73:93-99 (2015).</Citation>
</Reference>
<Reference>
<Citation>Martyn RD, Fusarium wilt of watermelon: 120 years of research. Hortic Rev 42:349-442 (2014).</Citation>
</Reference>
<Reference>
<Citation>Nonumura T, Tajima H, Kitagawa Y, Sekiya N, Shitomi K, Tanaka M et al., Distinguishable staining with neutral red for GFP- marked and GFP-nonmarked Fusarium oxysporum strains simultaneously colonizing root surfaces. J Gen Plant Pathol 69:45-48 (2003).</Citation>
</Reference>
<Reference>
<Citation>Oddino C, Marinelli A, Zuza M and March GJ, Influence of crop rotation and tillage on incidence of brown root rot of peanut caused by Fusarium solani in Argentina. Can J Plant Pathol 30:575-580 (2008).</Citation>
</Reference>
<Reference>
<Citation>Burton JW, Miranda LM, Carter TE and Bowman DT, Registration of ‘NC-Miller’ soybean with high yield and high seed-oil content. J Plant Regist 6:294-297 (2012).</Citation>
</Reference>
<Reference>
<Citation>Alla MMN, Shabana YM, Serag MM, Hassan NM and El-Hawary MM, Granular formulation of Fusarium oxysporum for biological control of faba bean and tomato Orobanche. Pest Manag Sci 64:1237-1249 (2008).</Citation>
</Reference>
<Reference>
<Citation>De Cal A, Larenas J, Redondo C, Martinez-Treceño A, Becerril M, Soria C et al., Comportamiento de variedades de fresa frente a enfermedades. Vida Rural 372:34-38 (2013).</Citation>
</Reference>
<Reference>
<Citation>Fang X, You MP and Barbetti MJ, Reduced severity and impact of Fusarium wilt on strawberry by manipulation of soil pH, soil organic amendments and crop rotation. Eur J Plant Pathol 134:619-629 (2012).</Citation>
</Reference>
<Reference>
<Citation>Gordon TR, Stueven M, Pastrana AM, Dennehy C, Kirkpatrick SC, Henry PM et al., The effect of pH on spore germination, growth and infection of strawberry roots by Fusarium oxysporum f. sp. fragariae, cause of Fusarium wilt of strawberry. Plant Dis. 103:697-704 (2019).</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Communauté de Madrid</li>
</region>
<settlement>
<li>Madrid</li>
</settlement>
</list>
<tree>
<country name="Espagne">
<region name="Communauté de Madrid">
<name sortKey="Villarino, Maria" sort="Villarino, Maria" uniqKey="Villarino M" first="Maria" last="Villarino">Maria Villarino</name>
</region>
<name sortKey="De Cal, Antonieta" sort="De Cal, Antonieta" uniqKey="De Cal A" first="Antonieta" last="De Cal">Antonieta De Cal</name>
<name sortKey="Larena, Inmaculada" sort="Larena, Inmaculada" uniqKey="Larena I" first="Inmaculada" last="Larena">Inmaculada Larena</name>
<name sortKey="Melgarejo, Paloma" sort="Melgarejo, Paloma" uniqKey="Melgarejo P" first="Paloma" last="Melgarejo">Paloma Melgarejo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000232 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000232 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32896102
   |texte=   Effect of chemical alternatives to methyl bromide on soil-borne disease incidence and fungal populations in Spanish strawberry nurseries: A long-term study.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32896102" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024